

Radminton
Decision Support in Racket Games

Design Document

sdmay20-44
Client: Simanta Mitra

Adviser: Simanta Mitra

Team
Benjamin Kramer - Meeting Facilitator

Brian Guidarini - Test Manager
Katelyn Sinn - Schedule Manager
John Rachid - Delivery Manager
 Aiden McMinimy - QA Manager

Christion Barnes - Report Manager

Table of Contents

Executive Summary

Development Standards & Practices

Software Practices

● Agile - The team uses Agile practices like iterative sprints, delivering working software within
each iteration, communicating with the client, and pair programming.

● Refactoring - The team is dedicated to refactoring at regular intervals to ensure the health,
reliability, and readability of the codebase.

 Engineering Standards

● PEP 8 Style Guide for Python Code [5]. Since this project is primarily developed in Python, the
team became familiar with the PEP 8 Style Guide for Python Code to ensure our code followed
industry standards and stayed readable.

Requirements

● Videos of badminton games can be analyzed to generate feedback for users.
● Livestream video of badminton match can be analyzed to provide real-time audio feedback to

players.
● Users must provide a video they recorded for non-live games or set up a camera of their own for

live capture.
● All video analysis can be done on a computer via our website.

Applicable Courses from Iowa State University Curriculum
In our time at Iowa State University, we've been lucky to have opportunities to learn a lot of important
concepts that made this project much easier on us. Without these foundational courses, this project would
likely not be achievable in the time given to us.

COM S 227: Intro to Object-Oriented Programming

● Taught team members object-oriented programming, a valuable asset in this project.

COM S 228: Intro to Data Structures

● Taught team members about data structures, a vital subject for all programmers.

2

Table of Contents

COM S 309: Software Development Practices

● This course was the first major project course for most of the team and helped us develop as team
members and developers.

SE 329: Software Project Management

● In this course, we learned the basics of project management, helping us to keep our team focused,
on time, and even make this document.

COM S 472: Principles of Artificial Intelligence

● This course gave a couple of members of the team a framework for thinking about intelligence in
software. With this knowledge, more sophisticated solutions to our decision engine were able to
be found.

MATH 207: Matrices and Linear Algebra

● Linear algebra is highly relevant to the project, as our computations and visualizations rely on an
understanding of mathematical transformations.

CPR E 575: Computational Perception

● This course taught many team members about computer vision and perception. This course
helped give the team a jumpstart by shortening the time it took to learn new technologies.

New Skills/Knowledge acquired that was not taught in courses
Computer Vision/OpenCV

● While some team members were already familiar with these concepts, half the team was not. This
gave that half a chance to learn these topics without taking a formal course on the subject.

Python

● Not all of the team had been exposed to Python before this project. Now, all members know how
to write quality Python code.

Badminton

● Our team was not very familiar with the sport of badminton before this project, so we took the
time to learn how to play the game to give us better insight into how the application should
function.

3

Table of Contents

Project Goals and Deliverables
Goal Description

Player tracking Player locations are found in screen space.

Ball Tracking The ball location is found in screen space.

Court Identification The court boundaries are found in screen space.

Player Location The location of the players are found in world space.

Ball Location The location of the ball is found in world space

Court Location A 2D representation is created of the court.

Ball Trajectory The trajectory of the ball is calculated.

Player Trajectory The trajectory of the players is found.

Player Location Suggestion An ideal location is suggested for the player.

Stroke Suggestion A stroke type (backhand, overhead, underarm, etc.) is suggested for the
player.

Return Location Suggestion An ideal area to hit the ball towards is suggested.

Give feedback The application suggests ways the player can improve.

Deliverable Description

Video Analysis Given a video, our application can give ball trajectory, player trajectory,
locations and more.

Feedback from Video Given a video of gameplay, our application can give suggestions on how to
improve.

Real-Time Feedback Given a live stream of video, our application can suggest ideal player actions
in real time.

Vocal
Communication

Our application can give audio suggestions over a Bluetooth earpiece.

Website The project will feature an easy-to-use website as a means to interact with the
software.

Web Service The project needs a way to support the use of the website, delivering all the
functionality as a service.

4

Table of Contents

 Table of Contents

1. 1 Introduction 7
1.1. Acknowledgement 7
1.2. Problem and Project Statement 7
1.3. Operational Environment 8
1.4. Requirements 8
1.5. Intended Users and Uses 8
1.6. Assumptions and Limitations 9
1.7. Expected End Product and Deliverables 10

2. Specifications and Analysis 11
2.1. Proposed Design 11
2.2. Design Analysis 11
2.3. Development Process 11
2.4. Design Plan 12

3. Statement of Work 13
3.1. Previous Work And Literature 13
3.2. Technology Considerations 13
3.3. Task Decomposition 13
3.4. Possible Risks And Risk Management 14
3.5. Project Proposed Milestones and Evaluation Criteria 15
3.6. Project Tracking Procedures 15
3.7. Expected Results and Validation 15

4. Project Timeline, Estimated Resources, and Challenges 16
4.1. Project Timeline 16
4.2. Feasibility Assessment 18
4.3. Personnel Effort Requirements 18
4.4. Other Resource Requirements 19
4.5. Financial Requirements 19

5. Testing and Implementation 20
5.1. Interface Specifications 20
5.2. Hardware and software 20
5.3. Functional Testing 21
5.4. Non-Functional Testing 21
5.5. Process 20
5.6. Results 22

6. Closing Material 23
6.1. Conclusion 23
6.2. References 24

5

Table of Contents

Table 1: Table with different use cases of using Radminton
Table 2: Table with different types of users correlating to use cases that would interest them
Table 3: Table describing parts of the end product
Table 4: Table with a break down of tasks/deliverables and their projected time and dependencies
Table 5: Table describing the effort points for each broken down task and why that estimation was
chosen
Fig. 1: Gantt Chart of the project’s past and projected schedule
Fig. 2: An example of a unit test we have
Fig. 3: Our process for determining if the performance of our code is quick enough for users
Fig. 4: Our process of communicating with the client and receiving feedback on our implementation

1 Introduction

1.1 Acknowledgement
The team would like to acknowledge our client and advisor Dr. Simanta Mitra who has provided project
guidance, server resources and even badminton equipment to help the team learn the sport and come up
with ideas.

1.2 Problem and Project Statement

Problem Statement

Badminton is a popular racket sport in which players hit a shuttlecock back and forth between a net until
one player cannot return the shuttlecock. Despite its popularity, the sport does not have much in the way
of sports technology to help casual players learn the game and competitive players improve. To remedy
this, Dr. Simanta Mitra tasked us with finding a way to objectively analyze his badminton play so that he,
and any other user, can figure out when they make mistakes and what they could have done better in those
moments.

Solution Approach

Our project, Radminton, attempts to provide an easy-to-use but powerful tool to help competitive and
casual players alike improve their Badminton game. Given a pre-recorded video of a badminton game,
Radminton will be able to analyze and provide feedback to the user. On a hit by hit basis, users will be
able to receive advice on where they should have been if they were unable to return the shuttlecock,
where they should have hit the shuttlecock to maximize their chances of scoring a point, what kind of

6

Table of Contents

stroke type they should use and more. Radminton will eventually be able to provide suggested moves
during a live game using Bluetooth earpieces and live streams of camera games.

1.3 Operational Environment
Radminton is expected to operate anywhere a modern smartphone or laptop is capable. However, if the
user wants to record a game or get live suggestions, they must be at a badminton court. This is because
our application relies on the markings of a badminton court to offer suggestions. Luckily, badminton
courts are not hazardous, and even if the environment was a professional game, the large crowds and loud
noises would not be an issue for Radminton.

1.4 Requirements
Functional

● Live streams of badminton games must be able to be processed in real time. This includes
reading, analyzing, and suggesting each frame in a sufficiently small amount of time.

● The user must be able to hear the advice from the program through a Bluetooth earpiece.
● Pre-recorded videos of badminton must be able to be analyzed by our application.

Environmental

● The decision engine must be able to run off a laptop set up near the court.
● The software must be accessible and usable from a website using a pre-recorded video.

Economic

● Server space is being provided to us by the university.
● Bluetooth equipment and cameras will be to be provided to us by the university once this point in

development is reached.
● Laptops are the primary driver of the project, and all members own one, saving significant

resource costs.

UI

● The UI must show where players were at specific points in the rally.
● The UI must advise the player on how they could have improved, including but not limited to:

■ Where the user should have returned the shuttlecock.
■ Where the user should have been before returning/dropping the ball.
■ The optimal type of return i.e. backhand, forehand, spike, etc.

1.5 Intended Users and Uses
 Use Case Number Use Case

7

Table of Contents

UC-1 Get basic advice such as where to return a shot and where to move to be
able to return the ball in real time.

UC-2 Use a pre-recorded video with the application to receive advice on where
the user should have been or returned the shuttlecock.

UC-3 Get diagrams showing play by play interactions.

UC-4 Use a pre-recorded video with the application to receive advanced advice
such as optimal stroke type and stroke strength.

UC-5 Access the application's website to upload videos and receive information.

Table 1

 User Use Cases

Novice Badminton Player UC-1, UC-2, UC-5

Experienced Badminton Player UC-1, UC-2, UC-3, UC-4, UC-5

Badminton Coach UC-2, UC-3, UC-5

Badminton Spectator UC-3

Sport Analyst UC-3, UC-5

Table 2

1.6 Assumptions and Limitations
Radminton is being developed with the following assumptions and limitations in mind:

Assumptions

● The maximum number of players on the court is four (two players per team).
○ Typical badminton games do not exceed this number, so while we can confidently say

any legitimate game will follow this assumption, users may have issues if they try to use
it in ways that break this assumption.

● The shuttlecock is green
○ Shuttlecocks are usually white, but often they are green. Our application relies on color to

determine where the shuttlecock is located, so if a user used a different color, they may
have issues with the application.

● A user will be able to record the full court.
○ Radminton requires that the entire court be visible. This may not always be possible for

the user.
● The court follows typical badminton dimensions.

○ While most courts follow the same standard court size, some courts may be
unconventional, which would be a problem for our modeling and tracking.

8

Table of Contents

Limitations

● Processing and analyzing a video should not exceed the length of the video itself.
○ For instance, a minute-long video should not take longer than one minute to process and

analyze. Results should be given to the user within that time.
● The application shall be useable from a web browser.

○ Whether the user is using a phone or a laptop, the application should run through the
browser.

● Tests have not been performed for all parts of the application.
○ While some test cases do exist, the vast majority of the application has yet to receive unit

testing. A fair amount of quality assurance has been done, however.
● Access to skilled badminton players is limited.

○ While the team's advisor and client is a skilled badminton player, Radminton will not be
able to be tested with professional players, limiting user testing.

1.7 Expected End Product and Deliverables
End Product

The end product of this project is a web application called Radminton, where users can upload videos of
badminton games they've played and receive suggestions on ways to improve. The user can also connect a
live stream to the application and receive badminton advice in real time through Bluetooth headphones. In
both cases, Radminton can give back hit by hit breakdowns that include where the ball went, where the
players were, and what the score was at any given time.

 User Deliverable Description

Suggestion Given a video of gameplay, our application can give suggestions on how
to improve including recommended stroke type, return location, and
where the player could have improved. This functionality will be
delivered on March 8th.

Real-Time Feedback Given a live stream of video, our application can suggest ideal player
actions in real time. This will utilize Bluetooth headphones to give
players audio feedback. This feature is not expected to be delivered
within this project cycle, and will more likely be completed within the
next two years.

Website To give access to the application to our users, we need a website to accept
videos and send back information. This piece of the project is expected to
be delivered by April 26th.

Table 3

9

Table of Contents

2. Specifications and Analysis

2.1 Proposed Design
Our project can be broken up by its tasks; tracking, real-world locations, suggestions, and our website.
For tracking, much of what we did implement OpenCV’s background subtraction methods [4]. For
players, we found the objects on the courts that were moving and filtered by size so as not to include the
moving shuttlecock. Much the same with the shuttlecock, we used background subtraction but, due to its
small size, we implemented another layer which was color filtering, which is why it is required for the
shuttlecock to be a bright green. Due to its small size, just the movement was not enough to remove
random movement elsewhere or false objects. Court detection uses OpenCV’s contour finding methods
[3]. Contours were then filtered out by length and then color, in our video, the color red. Since a
requirement we have is live video analysis, all our algorithms need to be efficient enough to give the
players feedback in a timely fashion. Therefore, we had to refactor and add improvements as we went.

Next, we had to translate that data from pixel coordinates to real-life locations. Since we knew the
dimensions of a badminton court and we knew the pixel coordinates of the court, you can apply a
homography translation [1] which OpenCV also has methods for. This is often used to take tilted flat
surfaces and create a top-down view of them in a different reference frame. You can implement that here
because you know the actual reference frame of the court and the pixel coordinates. The found
homography matrix can then be applied to the bottom point of the player objects since their feet are on the
same plane as the court.

While the player locations were somewhat simple because it was 2D, the ball location is a whole
different ball game. A way to find the real 3D coordinates is by using two cameras and applying
OpenCVs reference functions to it. Another way is by possibly curve fitting a line to predict where the
shuttlecock will go. If we don’t want to do real-time, we could simply “look ahead” to see where the
shuttlecock lands or is hit to generate feedback for a user with an already recorded video. Since one of our
requirements is real-time feedback, that would not be an option.

Suggestions are generated by using our real-world locations of the ball and players. We provide a
suggestion on where the player should move to by finding where the shuttlecock is going. We provide a
return location by choosing the spot where the opposing side is farthest from. We provide a stroke
suggestion by seeing where the player is moving to hit the shuttlecock and what side the shuttlecock
would be on with the least amount of distance to move.

Our website’s design has been discussed minimally with our client, however, the plan is to save
match data for a user so it can, over time, tell them their consistent weaknesses and strengths, save their
matches, or show them better ways to play in a match. This data can be saved in a database for a user.

2.2 Design Analysis
The pieces we have working confidently are ball tracking, player tracking, court detection, real-world
player coordinates, and return location. The frames per second is still slightly too slow to do in real time

10

Table of Contents

but we are always improving and is a focus of modification in our second semester. Background
subtraction and color filtering for all tracking as mentioned in 2.1 worked as expected. Due to the
difficulty of predicting where the shuttlecock is going, we have yet to find the real-world ball data or
where to suggest where the player should move to. If we cannot find a good way to predict, we will have
to fall back on just doing pre-recorded videos and use the “look ahead” method discussed in 2.1 for the
real-world shuttlecock location.

Some strengths in our proposed solution are our knowledge of OpenCV documentation and what
can be applied from it. In the case of homography transformation or background subtraction, we spent a
lot of time researching our plans and what would fit best with the highest efficiency. Some weaknesses,
however, are our knowledge on how to do 3D transformations and how color filtering removes the ability
for many courts or shuttlecock colors to be viable which could be an improvement later on to allow more
colors or not filter at all.

2.3 Development Process
Due to the structure of the class and how our team meets, we decided that Agile was our best option for
our development process. Every week, we met with our client, Dr. Mitra, and discussed our updates,
concerns, and thoughts on the project and our ideas. Additionally, we met as a team every week to figure
out what things were working for us, how we could improve what we already completed, and our next
goals. This is what our sprints looked like during this semester, with new developments happening about
every week and a half to two weeks. Another integral part of our sprints was discussing and thinking
about how our new goals would coincide with the current architecture of our project and if it could be
easily integrated. We began to do this after we realized, at some point this semester, that our project code
wasn’t really modular and as efficient as it could be. After remodeling our project architecture, we discuss
as a group how we are going to integrate new code into our project, and how it may affect old and new
modules in our framework.

2.4 Design Plan
Now that we have a working project, our future sights are set on implementing our suggestion engine, the
real-time feedback mode, and then finally integrating all modules seamlessly. We will start this second
iteration by developing and integrating the suggestion engine. This is the last module of our project and is
arguably the most important.

For us to develop the suggestion engine, we need to extrapolate information from the data we are
receiving through our player identification and shuttle identification classes. For example, for use cases 1
and 2, we need to be able to advise the user on where they should have been to gain the biggest
advantage, based on their opponent’s player location data and the shuttlecock’s trajectory.

Once the suggestion engine is optimized for accuracy and is fully integrated with the rest of the project,
we will finally be able to move to the final phase of the project: the website application. The website and
its features are what the user will primarily be interacting with. For example, most users will be able to
access the website and upload some type of video of badminton gameplay and get some information or

11

Table of Contents

feedback in return. After finishing the website, our final goal is to optimize the framework as much as
possible to increase processing speeds, user interactivity, and finally improving UI aesthetics. Once all of
these goals have been met, and last but not least, the client is satisfied with the product, our team’s project
will have been successfully completed.

12

Table of Contents

3. Statement of Work

3.1 Previous Work And Literature
Previous work and literature related to this project includes a Badminton Game analysis app. This app
allows for manual input of the results of badminton rallies. This can help with the analysis of badminton
players or games. From the manual input, it can provide information like statistics or scatterplots of where
the birdie was hit. One large problem with this app is everything is manual. We differentiate yourself
from this work by planning on automating this input and providing live feedback while the game is being
played. Another piece of related work is Fishified's Tracker3D Direct to Linear Transform [2]. This is an
example of providing 3D coordinates for a moving object when using a normal digital camera. With this,
you need to provide many details about the camera calibration and do some linear algebra to get the 3D
coordinates. This calibration information must be accurate and cannot be easily found. In the end, we
decided on not using this approach in order to provide the easiest experience for the user. This results in
not being able to track the birdie as accurately.

3.2 Technology Considerations
We had various technology considerations when working on this project. The main consideration was
using a normal digital camera (one that can be found on a phone) as opposed to a stereo camera. A stereo
camera is not as accessible and more expensive but can provide accurate 3D coordinates for tracking a
moving object. In the end, we decided on using a Digital camera for its ease of use and accessibility. This
does, however, make it harder to accurately track the 3D coordinates of the birdie. This results in us
having to put far more work into the identification Task[3.3]. Another technology consideration was
Python Vs. C++. We knew we had to choose one of these languages since they were supported by
OpenCV. C++ is a compiled language that would allow for faster computing. Although C++ is faster it
does not outweigh the cons of the language. Some of these cons are that C++ is difficult to use and
difficulty of importing other libraries. In the end, we decided to go with Python. Starting with the pros,
Python is a very easy language to use and learn. Python also allows for easy use of other libraries. Python,
however, is notorious for being difficult to debug in large codebases and is far slower than C++ as it is a
scripting language.
Python Vs. C++. In the end, we selected Python due to its ease of use and ability to easily incorporate
other libraries. Being able to use other libraries easily can make a very taxing problem into a quite simple
one. This saves a large amount of time throughout this project.

3.3 Task Decomposition

13

https://github.com/Fishified/Tracker3D/blob/master/DLT.py

Table of Contents

Identification - Locating the coordinates of each crucial aspect of gameplay. These coordinates are
required to be accurate as they will be used heavily throughout the project.

● Identify and return court coordinates
○ Automatically provide the coordinates of every line on the court,

● Identify and track birdie while providing the current coordinates
○ Provide the 3D coordinates of the birdie and update these coordinates every time the

birdie changes position.
● Identify and track the players while returning the coordinates at different parts of their bodies

○ Provide the 2D coordinates of the players and update these coordinates every time either
player changes their location.

Prediction engine - Using the identification data to give the player the optimal moves they should be
making.

● Predict where the best location to return the ball is
○ This will recommend returning the birdie to the location fathers away from the defending

player.
● Predict the best location to move to return the shot is

○ This will allow the defending player to be in the most optimal location to return the
estimated birdie landing location.

● Predict the type of stroke you should return the birdie with
○ This will provide the defending player with the optimal stroke they should use in order to

return the birdie.

Suggestion - Provide live suggestions and generate feedback to help the player become a better player.

● Generate feedback
○ This will inform the player or players where they could have improved on throughout the

game. This will be able to be completed offline and is not in real time.
● Send prediction to player

○ This sends the data from the prediction engine to the player via Bluetooth. This is done in
real time and will be used to tell the player the optimal decision.

3.4 Possible Risks And Risk Management
Some possible risks of this project are our group members course load, Players being given bad
suggestions/feedback, and not being able to meet time frames. The course load is a risk since our
schedules as students can vary. If our course load is high it can make it quite challenging to give this
project the proper amount of time it requires. This can result in an inferior final project. Players being
given bad suggestions or feedback could result in the user being less satisfied in our project. We plan to
manage this risk by meeting at times that work for all group members and being understanding and

14

Table of Contents

helpful if a group member is unable to finish their part. Since our program analyzes the player’s gameplay
and provides feedback any bug or unintended behavior could give poor feedback. We plan on managing
this risk by doing heavy unit testing and having the feedback be reviewed by competitive badminton
players. The last risk is not being able to meet time frames. If we are not able to stay on schedule for this
project we might need to cut things out of this project. This can also result in an inferior project. This is
managed through the delivery manager and the use of a Gantt chart for scheduling.

3.5 Project Proposed Milestones and Evaluation Criteria
Our milestones are the completion of our three main tasks[3.3]. These milestones are as follows:
completion of the identification task, completion of the prediction engine task and completion of the
suggestion task. To evaluate that these tasks are completed, we will be using comprehensive unit tests.
These tests will confirm that each task is returning accurate and proper information. Another evaluation
we will use is review from competitive badminton players. These players will ensure that the optimal
move is being returned each time and the program is working as intended

3.6 Project Tracking Procedures
We are using Trello for project tracking. This allows us to easily divide work up by iteration and easy
assignment of subtasks to different members. Trello also helps iteration requirements to be more clear and
prevents iteration requirements from not being completed.

3.7 Expected Results and Validation

The desired outcome is the creation of a product titled Radminton. Radminton attempts to provide an
easy-to-use but powerful tool to help competitive and casual players alike improve their Badminton game.
Given a pre-recorded video of a badminton game, Radminton will be able to analyze and provide
feedback to the user. On a hit by hit basis, users will be able to receive advice on where they should have
been if they were unable to return the shuttlecock, where they should have hit the shuttlecock to maximize
their chances of scoring a point, what kind of stroke type they should use and more. Radminton will even
be able to provide suggested moves during a live game using Bluetooth earpieces and live streams of
camera games.

To confirm the project works at a high level, this will be used along with competitive badminton play.
This will also be reviewed by competitive badminton players to ensure that the feedback and suggestions
are correct.

15

Table of Contents

4. Project Timeline, Estimated Resources, and
Challenges

 4.1 Project Timeline
This is the proposed project timeline for our senior design project.

Task Breakdown

1. Image Tracking
1.1. Player Tracking
1.2. Ball Tracking
1.3. Court Identification

2. Real Life Coordinates
2.1. Player Location
2.2. Ball Location
2.3. Court Location

3. Object Trajectory
3.1. Player Trajectory

4. Suggestion
4.1. Player Location Suggestion
4.2. Return Location Suggestion
4.3. Stroke Suggestion

5. Web App
5.1. Website
5.2. Web Service

Task Dependencies

Task Dependencies Estimation

1.1 Player Tracking None 3 weeks*

1.2 Ball Tracking None 6 weeks*

1.3 Court Identification None 3 weeks*

2.1 Player Location 1.1, 2.3 2 weeks*

2.2 Ball Location 1.2, 2.3 8 weeks

2.3 Court Location 1.3 1 week*

16

Table of Contents

3.1 Ball Trajectory 2.2 2 weeks

4.1 Player Location Suggestion 2.2 3 weeks

4.2 Return Location Suggestion 2.1 2 week*

4.3 Stroke Suggestion 4.1 2 weeks

5.1 Web App None 8 weeks

5.2 Web Service 2.2, 2.1 7 weeks

Table 4

*This is not a projected estimation, it has been completed already and this was the time it took.

Gantt Chart

Fig. 1

Above is the Gantt chart showing semester one’s completed work and the planned timeline for next
semester. Taking into account the exam and vacation weeks, we have about 12 weeks per semester of
work. You can see gaps in some people’s work in semester one; this is due to personal timelines, working
on smaller improvements and maintaining code, and other coursework. Semester two is projected but is
subject to change based on unseen difficulties or needed improvements.

The times for semester one were actual work times on deliverables with the specified teammate(s)
working on it. Semester two times for the web app were taken from experience on how much time it takes
to set up a web service from scratch and hook up and create a website. The other tasks with suggestions or
ball locations have known implementation plans so we feel comfortable with our projected estimations.

17

Table of Contents

4.2 Feasibility Assessment

In the beginning, we discussed different outcomes of the project with our client. The client initially talked
about wanting to feed existing video into our program to receive feedback. This idea escalated to
discussing the feasibility of taking live video and feeding audio instructions to a player on the court. For a
while, we wrestled with trying to do it live and how we would need to predict movements without being
able to “look ahead” to where the ball was going. This created a stall in our timeline.

While the feasibility of taking live video is not looking very high, the timeline for doing it non-live is
good. That removes the complexity of not being able to “look ahead” for the ball location to be able to
give feedback to where the player should go and the stroke type. It also removes the complexity of
hooking up live video and audio instructions. If the video is not live, then the efficiency of the algorithms
is less important which means less time trying to maximise the speed of our programs. In summary, the
feasibility of our project being in a place to accept recorded video is high, whereas live is not.

4.3 Personnel Effort Requirements

Effort Point system:

1 - A task with a clear implementation not requiring too much time or resources

2 - A somewhat known implementation or one that requires some research to implement

3 - A somewhat unknown implementation and one that required research and more time

5 - A lot of time to complete or projected to complete, requires a lot of team members to complete in the
time frame with much research and deliberation

Task Effort
Points

Explanation

Player Tracking 3 The path for implementation was somewhat straightforward however
took a lot of trial and error

Ball Tracking 5 Due to the small size of the birdie, there was a lot of work done to
track it and also get a video of high enough quality to track it. It took
over a month to complete and a lot of research.

Court Identification 3 As the court was one of the most important objects needed to be
identified and the court needed to be found first, development required
research into how to identify the court.

Player Location 1 A simple implementation using the court reference to convert to a
location, didn’t take a lot of resources or time.

18

Table of Contents

Ball Location 5 This required a lot of deliberation amongst the team and if it was
feasible to do this live described above in 4.2. Due to the research and
discussion that went into it just to decide what the best route was and it
is yet to be implemented.

Court Location 2 Required research into how to use the court as a reference frame for
the player and ball locations however was quick to implement.

Ball Trajectory 3 An unsure implementation but the investigation time will be capped at
a week since it is not a high priority.

Player Location
Suggestion

3 A known implementation since Return Location Suggestion we have
completed and we can use that as reference. More difficult since ball
location is more complicated with timing in the volley.

Return Location
Suggestion

2 Required a lot of deliberation and time to figure out what this was
dependant upon and also architecture changes to service this
functionality.

Stroke Suggestion 1 A somewhat simple implementation that won’t require that much time
to complete.

Web App 5 This is yet to be discussed in length. It will require conversations on
design amongst the team and with the client to do what is easiest but
also what users want. It is large and will take multiple months to create
the UI and functionality.

Web Service 5 A somewhat unsure implementation and will require a lot of time and
resources to build up a web service from scratch.

 Table 5

4.4 Other Resource Requirements

Since it is a coding project most materials are just IDEs or libraries. We all used PyCharm as an IDE and
used the OpenCV library. All programming and processing were done on our personal computers. In
order to record a badminton game, we borrowed equipment from our client to play a game in a gym on
campus and a camera on a teammate’s phone.

4.5 Financial Requirements
All of the software and hardware we have decided to use is free to download or available for free because
a developer already owns it or we know someone willing to provide it. PyCharm is the IDE we use which
is free with a commercial edition as we are all Iowa State University Students. All developers own
computers to write and run our project on. Cameras can just be phone camera setup using tripods.
Therefore no expenses are reported for this project.

19

Table of Contents

5. Testing and Implementation
Testing is an extremely important component of most projects, whether it involves a circuit, a process, or
a software library

Although the tooling is usually significantly different, the testing process is typically quite similar
regardless of CprE, EE, or SE themed project:

1. Define the needed types of tests (unit testing for modules, integrity testing for interfaces,
user-study for functional and non-functional requirements)

2. Define the individual items to be tested

3. Define, design, and develop the actual test cases

4. Determine the anticipated test results for each test case 5. Perform the actual tests

6. Evaluate the actual test results

7. Make the necessary changes to the product being tested 8. Perform any necessary retesting

9. Document the entire testing process and its results

Include Functional and Non-Functional Testing, Modeling and Simulations, challenges you’ve
determined.

5.1 Interface Specifications

Our project will require interfacing with a server with a database and web service. The database will be
written in SQL. The web service will be written in Java with Spring-Boot; it will communicate with the
database using JDBC. We have chosen these technologies because of our familiarity, and the fact that
Spring-Boot is an industry-leading web application framework.

5.2 Hardware and software
Our Python code is being tested with the unittest library. It is the most popular unit testing library

for Python, and it provides an intuitive, clean system for testing. It also includes mocking tools.

Our backend unit testing will be performed with the JUnit library. Similarly to unittest in Python, JUnit is
the most accepted library for testing in Java.

Our backend integration testing will be performed with JUnit and Mockito. JUnit is being used for the
same reason as unit testing. Mockito, however, is going to provide us with tools to mock out functionality
in the backend so we won’t have as much overhead in our integration tests.

20

Table of Contents

5.3 Functional Testing
Test Plan

Our project will consist of two testing components: unit testing and integration testing. Our unit
testing will cover our source classes, covering all non-trivial functionality. It tests each individual
component to ensure the small pieces work. Our integration testing will check if the system works in its
entirety. We are using the unittest library for Python unit testing, and JUnit for Java unit testing.
Integration testing will only be done in the Java backend, so it will be using both JUnit and Mockito.
For Python unit testing, we will write the tests after each component is written. The reasoning behind this
approach rather than test-driven-development is that the green state for our code will not come down to
exact results. For example, we don’t know what bound to expect to capture around each player for our
player identification. If we write the code first, we can find a practical tolerance for the location to set for
unit tests.
Our Java backend will be taking advantage of test-driven-development. It’s going to be more practical to
implement since there are exact results we can test for.

Test Samples

At this point, we only have Python implemented. Thus, we do not have samples for the backend.
The test shown below is what a typical test case in our Python code looks like. We use highly descriptive
names to maintain clarity.

Fig. 2

5.4 Non-Functional Testing

Performance

● The number of frames we can process per second

Usability

● How user-friendly our design is, and whether or not it meets our client’s standards.

5.5 Process

21

Table of Contents

To test performance, we observe the amount of time it takes for each frame. If it is running at an
unreasonably slow frame rate -- less than 15 fps -- we will examine the cause. For example, when our
player tracking was bottlenecking the application, we redid it because our initial implementation was
using a slow, built-in OpenCV function. Other than finding a new implementation, we have also used
parallelising and typical optimising as performance-boosting strategies.

Fig. 3

Usability testing is based on how easy our application is to use, and if it meets the needs of our client. To
do this, we demo the application weekly and get feedback from our client.

22

Table of Contents

Fig. 4

5.6 Results
Successes

● Player Tracking
○ Player tracking runs without fail. There are no false positives, nor are there ever instances

when the players aren’t tracked.
● Shuttle Tracking

○ Shuttle tracking has been successful; it runs well enough to get meaningful data.
● Homography

○ We can quickly translate angled coordinates to top-down coordinates.
● Shuttle Return Location Recommendation

○ We can provide meaningful data as to where each player should return the ball
● Court Line Recognition

○ Each line on the court can be identified in a trivial amount of time; it only runs on the
first frame of the video.

Failures

● 3D Transformation
○ We have put a lot of time into trying to find a way to transform 2D coordinates into 3D.

These efforts have been futile, unfortunately. There is no reliable way to translate 2D
coordinates into 3D coordinates. Next semester, we will evaluate the need for 3D at all;
we may be able to get the data we need from 2 dimensions. We will also explore getting a
second camera, which will enable us to get 3D coordinates.

23

Table of Contents

Learning Outcomes

● Some of our members have never used OpenCV or computer vision in the past, so this project
was a good learning experience for computer vision.

● Some of our members haven’t used Python, and this project provided a good way to learn it.
● We learned a lot about architecture. Clean architecture was a high priority for us, and that has led

us to learn more about architecture patterns.
● We learned about the logistics of coordinate transformations by exploring 3D and 2D

transformations.
● Most of us came into this project knowing almost nothing about badminton. We’ve learned a lot

about the sport from this project. We’ve also gotten together and played it.

Implementation Issues

● Our original architecture was poorly set up. We spent about a week refactoring it and ended up
with a design we liked.

6. Closing Material

6.1 Conclusion

In trying to actualize this project, the team has constructed a substantial demonstration that shows our
ability to correctly identify player locations, shuttlecock locations, model court dimensions and suggest
basic actions to the player. The application has also already been largely architectured, giving us a good
frame to work with going forward.

However, our ultimate goal goes far beyond this demo. Radminton's goal is to be an easily accessible web
application capable of receiving video and giving suggestions to users. Beyond that, we want to provide
real-time feedback to players using Bluetooth headphones.

The best plan of action in achieving this goal is to build a powerful identification and suggestion engine
that can then be connected with an easy-to-use web interface. As our engine has started to actualize, web
interface creation will begin and be the primary concern of a small portion of the screen. This will allow
us to deliver a more user-friendly demonstration than anyone with a phone or computer can easily check
out and follow.

From there, the power of the application will continue to grow and deliver all the features discussed in
this document.

24

Table of Contents

6.2 References
[1] Features2D + Homography to find a known object — OpenCV 2.4.13.7 documentation. (2019).
Retrieved 9 December 2019, from
https://docs.opencv.org/2.4/doc/tutorials/features2d/feature_homography/feature_homography.html

[2] Fishified/Tracker3D. (2019). Retrieved 8 December 2019, from
https://github.com/Fishified/Tracker3D/blob/master/DLT.py

[3] OpenCV: Contours : Getting Started. (2019). Retrieved 8 December 2019, from
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html

[4] OpenCV: How to Use Background Subtraction Methods. (2019). Retrieved 8 December 2019, from
https://docs.opencv.org/master/d1/dc5/tutorial_background_subtraction.html

[5] Python PEP 8 -- Style Guide for Python Code. (2001). Retrieved 8 December, 2019, from

https://www.python.org/dev/peps/pep-0008/

25

https://docs.opencv.org/2.4/doc/tutorials/features2d/feature_homography/feature_homography.html
https://github.com/Fishified/Tracker3D/blob/master/DLT.py
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/master/d1/dc5/tutorial_background_subtraction.html
https://www.python.org/dev/peps/pep-0008/

